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Hit and run crash analysis using association
rules mining

Subasish Das , Xiaoqiang Kong, and Ioannis Tsapakis

Texas A&M Transportation Institute, Texas A&M University System, College Station, Texas, USA

ABSTRACT
Hit-and-run crashes have drawn growing attention because of
the severe consequence of the delaying emergency assistance
to victims. However, the number of related studies is still lim-
ited due to the lack of relevant adequate data. The objectives
of this research are to, (1) identify the crash and geometric
features, which contribute to hit-and-run crashes, (2) discover
how those measures change in the case of the segment and
intersection-related crashes. The study applied market basket
analysis to mine associations between the crash and geomet-
ric features of hit-and-run crashes. Based on the generated
rules, the results show single-vehicle crashes are the first com-
mon factor of hit-and-run crashes and dark lighting is the
second factor. The combination of these two factors was
found to clearly associate with more severe crashes. The study
also found hit-and-run crashes mostly occurred in urban areas.
The rules also show segment-related crashes have higher fatal-
ity rates than intersection-related crashes. These findings sug-
gest that improvements such as roadway markings, lighting,
and installation of cameras at intersections could help to
reduce hit-and-run crashes or detect the hit and
run offenders.

KEYWORDS
hit-and-run crashes; data
mining; market basket
analysis; rules mining

1. Introduction

Hit-and-run (H&R) crashes refer to crashes where the at-fault (responsible
for crash occurrence) drivers leave the crash location without helping vic-
tims or reporting the occurrence of crashes to relevant authorities. These
crashes could significantly increase the probability of severe injuries or
fatalities, particularly for vulnerable roadway users like pedestrians and
bicyclists, due to delays in emergency assistance. Although H&R is a severe
crime according to law enforcement agencies, and serious criminal charges
befall at-fault drivers if caught later, the frequency of H&R crash occur-
rences is still high. According to the National Highway Traffic Safety
Administration (NHTSA 2016), an estimated 737,100H&R crashes
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happened in the U.S. in 2015, which indicates that a H&R crash happens
somewhere in the U.S. in every 43 seconds. The fatalities that resulted from
H&R crashes in 2016 added up to 2,049, the highest number ever recorded
in a year (Benson, Arnold, Tefft, & Horrey, 2018). In Louisiana, around
109,000H&R crashes (12% of all crashes) happened during 2010–2015. To
put it in context, there are approximately 50H&R crashes occur on
Louisiana roadways every day. The number of fatal crashes represents 5%
of all fatal crashes in Louisiana. In 2015, the number of H&R crashes in
this state increased by approximately 10% from 2010. This sharp rise calls
for a rigorous analysis of H&R crashes and identification of appropriate
strategies to address this issue.
There is a limited number of studies on H&R crashes. Most of the stud-

ies attempted to identify the driver’s traits in leaving a H&R crash scene.
In many cases, there is missing information regarding the offender and
associated traits. There is a need to study crash and geometric characteris-
tics of H&R crashes. Moreover, Louisiana Crash Data Reports (2019) shows
that the count of H&R fatal crashes on segments is approximately three
times the H&R crashes at intersections. This study aims to answer two
research questions: (1) what crash and geometric measures contribute to
H&R crashes, and (2) how these measures change in segment and intersec-
tion-related crashes. The answers are important in determining appropriate
countermeasures to reduce the number of H&R crashes. This study applied
market basket analysis, also known as association rules mining, to a 6-year
(2010–2015) H&R crash data set in Louisiana to identify key rules regard-
ing the crash, geometric and environmental characteristics of H&R crashes.
The reason for using association rules is related to complex interactions
among contributing factors associated with H&R crashes. The interactions
in the form of rules can provide valuable insights for the occurrences of
H&R crashes. The objectives of this research are to (1) identify the crash
and geometric features, which contribute to H&R crashes and (2) discover
how those measures change in the case of the segment and intersection-
related crashes. The outcomes from the association rules showed that this
data mining tool is well suited to describe and improve decision making
for addressing H&R crashes.

2. Literature review

Crash frequency analysis and crash severity analysis are two major trans-
portation safety research areas, which have been extensively studied. Lord
and Mannering (2010) conducted a comprehensive review of state-of-the-
art crash frequency studies and their limitations. Savolainen, Mannering,
Lord, and Quddus (2011) conducted a similar study on crash-injury
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severities in 2011. Mannering and Bhat (2014) summarized analytical meth-
ods used in these two transportation research areas and provided future
directions. The essential methodology behind transportation safety analysis
is to identify the relationship between a large variety of variables and crash
occurrence or crash severity. To achieve this goal, a variety of methods
have been applied and largely accepted by transportation researchers. The
research team developed a weblink that provides a comprehensive biblio-
graphic list of traffic safety studies. Interested readers can consult this web-
page (http://subasish.github.io/pages/TRB2016/crash.html) for further
investigation. The state-of-the-art methods include logistic regression (Al-
Ghamdi, 2002; Dissanayake & Lu, 2002; Richard, Kim, & Ulfarsson, 2017),
decision trees and neural networks (Chung, 2013; da Cruz Figueira,
Pitombo, de Oliveira, & Larocca, 2017; Khan, Bill, & Noyce, 2015; Prato,
Gitelman, & Bekhor, 2011; Saha, Alluri, & Gan, 2015), support vector
machines (Ahmadi, Jahangiri, Berandi, & Machini, 2018; Chen, Zhang,
Qian, Tarefder, & Tian, 2016; Li, Lord, Zhang, & Xie, 2008; Sun, Das, &
Broussard, 2016), rough sets (Kim, Pant, & Yamashita, 2008), text mining
(Brooks, 2008; Brown, 2016; Gao & Wu, 2013; Rakotonirainy, Chen, Scott-
Parker, Loke, & Krishnaswamy, 2015; Zhang, Green, Chen, & Souleyrette,
2019), Twitter mining (Panagiotopoulos, Barnett, Bigdeli, & Sams, 2016),
multiple correspondence analysis (Das, Avelar, Dixon, & Sun, 2018; Das,
Brimley, Lindheimer, & Pant, 2017; Das & Sun, 2015, 2016; Jalayer, Pour-
Rouholamin, & Zhou, 2018), association rules mining (Ait-Mlouk,
Gharnati, & Agouti, 2017; Das, Dutta, Avelar, et al., 2018; Das, Dutta,
Jalayer, Bibeka, & Wu, 2018; Das, Dutta, & Sun, 2019; Geurts, Thomas, &
Wets, 2005; Weng & Li, 2017; Weng, Zhu, Yan, & Liu, 2016), association
rules negative binomial miner (Das, Minjares-Kyle, Avelar, Dixon, &
Bommanayakanahalli, 2017), and deep learning (Das, Dutta, Dixon,
Minjares-Kyle, & Gillette, 2018; Gibert, Patel, & Chellappa, 2017).
The studies on H&R crashes are sparse, with only a few major works

written over the last 30 years. The key focus areas are characteristics of the
driver and victims and roadway environment and crash characteristics. The
first research on H&R crashes by Solnick and Hemenway (1994), which
stated a possible association between alcohol and H&R behavior. Since
then, H&R crashes have been slowly attracting increasing attention of
researchers as H&R data become more accessible, such as Fatality Analysis
Reporting System (FARS) databases. Those published results identified a
wide range of factors that contributed to H&R crashes (Aidoo, Amoh-
Gyimah, & Ackaah, 2013; Bahrololoom, Moridpour, Tay, & Young, 2017;
Jiang, Lu, Chen, & Lu, 2016; Kim et al., 2008; Lopez, Glickman, Soumerai,
& Hemenway, 2017; MacLeod, Griswold, Arnold, & Ragland, 2012;
Roshandeh, Zhou, & Behnood, 2016; Solnick & Hemenway, 1994, 1995;
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Tay, Barua, & Kattan, 2009; Tay, Kattan, & Sun, 2010; Tay, Rifaat, & Chin,
2008; Zhang et al., 2014; Zhou, Roshandeh, Zhang, & Ma, 2016). However,
only two studies focused on bicycle involved H&R crashes (Bahrololoom
et al., 2017; Lopez et al., 2017). These studies found that the most critical
contributing variables are geometrics, environmental factors, vehicle and
driver features.
The literature identified vehicle features, such as type and age, and

human factors are closely correlated with H&R crashes (Aidoo et al., 2013;
Bahrololoom et al., 2017; Kim et al., 2008; Lopez et al., 2017; MacLeod
et al., 2012; Roshandeh et al., 2016; Solnick & Hemenway, 1995; Tay et al.,
2008, 2009, 2010; Zhou et al., 2016). Several researchers pointed out the
likelihood of being caught, level of severity of the crash, and risk-taking
tendency of the at-fault driver are the main determinants of fleeing. Even
with the increasing accessibility of H&R data sets, researchers face the
problem of lacking complete data sets. In many cases, researchers conduct
studies based on the data set with available variables. For most of the H&R
crashes reports, information about the victim is readily available. However,
the driver’s information is often absent. This could lead to a small size or
an incomplete data set. Using such limited data, the associations between
potential factors and fleeing from the crash site may produce questionable
results. A comprehensive literature review of H&R crashes can be found in
Das, Dutta, Kong, & Sun (2018) study.
The main objective of this study is to identify the crash and geometric

factors that influence the decisions of drivers to flee after crashes in
Louisiana. This research focuses on studying the relationship of level of
severity of the crash, geometric, crash types, and environmental variables.
Previous studies on this topic extensively used methods like logistic regres-
sion. To determine the most relevant patterns, this study applied ‘market
basket analysis,’ which is also known as ‘association rules mining.’

3. Methodology

With the rapidly growing technology, the increasing size and complexity of
data gradually become obstacles of employing conventional research meth-
ods. Especially for those data sets with a large number of features, conven-
tional statistical models cannot determine hidden associations. Without any
prior assumption, many algorithms in data mining can determine hidden
and nontrivial patterns. These algorithms can help researchers to find pat-
terns rather than confirm prior hypotheses. For this reason, data mining
methods are not only concerned with algorithmic capabilities but also pro-
vide tools to analyze work without any prior assumptions.
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3.1. Overview of market-based analysis

Market basket analysis is a popular data mining approach. As a nonpara-
metric method, it avoids making any parametric assumptions as most of
the parametric methods do. It also has great flexibility while dealing with
data sets with a significant amount of variables, which is called frequent
itemset (Weng et al., 2016). To tackle the frequent itemset/product prob-
lem, researchers invented a large number of algorithms. Among these algo-
rithms, APRIORI, developed by Agrawal and Srikant (1994), is a level-wise,
breadth-first algorithm which counts transactions. This algorithm can be
used to mine frequent itemsets, maximal frequent itemsets, and closed fre-
quent itemsets. The implementation of the a priori algorithm (principle: if
an itemset is frequent, then all of its subsets must also be frequent) can
additionally be used to generate association rules.
This algorithm helps researchers mine out frequently occurring itemsets,

consequences, arrangements, and proper associations between various
items. A set of definitions are given here before demonstrating the method
with an example. Let I¼ i1, i2, … im be a set of items (e.g., a set of crash
categories for a particular crash record) and C¼ c1, c2, … , cn be a set of
database crash information (transaction) where each crash record ci con-
tains a subset of items chosen from I. An itemset with k items is called as
a k-itemset.
The definition of association rule can be demonstrated as A ! B, where

A and B are disjoint itemsets. Here, A is known as the antecedent and B is
the consequent. Generally, support is defined as the percentage of casualties
in the data set that contains the itemset. Confidence is a ratio of the num-
ber of all crashes in C to the number of crashes that include all items in I.
Lift is a ratio of confidence over expected confidence. The equations of
support are listed in Equation 1 to Equation 3.

S Að Þ ¼ r Að Þ
N

(1)

S Bð Þ ¼ r Bð Þ
N

(2)

S A ! Bð Þ ¼ r A \ Bð Þ
N

(3)

Where,
r Að Þ ¼ Number of incidents with A antecedent
r Bð Þ ¼ Number of incidents with B consequent
r A \ Bð Þ ¼ Number of incidents with both A antecedent and

B consequent
N¼Total number of incidents
S(A) ¼ Support of antecedent
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S(B) ¼ Support of consequent
S(A ! B) ¼ Support of the association rule (A ! B)
Confidence measures the reliability of the inference of a generated rule.

Higher confidence for a A ! B indicates that presence of B is highly vis-
ible in the transactions having A. The lift of the rule makes an association
with the frequency of co-occurrence of the antecedent and the consequent
to the expected frequency of co-occurrence.

C A ! Bð Þ ¼ S A ! Bð Þ
S Að Þ (4)

L A ! Bð Þ ¼ S A ! Bð Þ
S Að Þ:S Bð Þ (5)

Where,
C(A ! B) ¼ Confidence of the association rule (A ! B)
L(A! B) ¼ Lift of the association rule (A ! B)

The lift measure is used to determine the correlation between antecedent
and consequent. A lift value above 1 indicates significant interdependence
between the antecedent and the consequent, while a value smaller than 1
indicates low interdependence, and a value of 1 designates independence. A
rule with a single antecedent and a single consequent is defined as a two-
product rule; similarly, a rule with two antecedents and single consequent
or one antecedent and two consequents is defined as a three-product rule.
A critical inference of the association rules is that the generated rules are
not needed to be interpreted as causation rather than association.

4. Data preparation

The data set of the current study includes police-reported crashes in
Louisiana from 2010 to 2015. Among several variables, one of them shows

Figure 1. Flowchart of data preparation.
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whether the crash was H&R. Louisiana crash database contains four major
data tables: (1) crash table, (2) roadway inventory table known as
Department of Transportation and Development (DOTD) table, (3) vehicle
table, and (4) occupant table. The crash table contains crash and environ-
ment-related information. The DOTD table contains roadway geometry
information for each crash. The vehicle table provides information on all
involved vehicles. All of these tables contain a unique identifier
(CRASH_NUM) for each crash, which is generally used for data merging.
At first, this study identified H&R crashes by using the H&R indicator col-
umn in the crash table. Later, this table was merged with DOTD and
vehicle table. Figure 1 illustrates the data preparation task in a flowchart.

5. Descriptive statistics

The data integration process is based on two key variables: crash id and an
identifier of H&R crashes. The identifier is based on the structured crash
database, which was developed from the individual police report. Louisiana
crash data provides crash narratives in electronic format for the majority of
the crash events. A preliminary matching shows around 98% accuracies of
the reported ‘hit-and-run’ class identifier. Two separate data sets were pre-
pared based on the location of the H&R crashes: intersection-related and
segment-related. Intersection-related crashes were identified by using the
values of two columns. If the intersection column shows ‘yes’ and the dis-
tance to intersection is 250 ft, the crash is assigned as intersection related
crashes. The geometric information of main roadway (as identified in the
police report) is considered as the geometric data associated with the spe-
cific crash. The variable selection was conducted based on the literature
search. Variables with over-represented category or attribute are removed.

Table 1. Intersection and segment-related crash severity distribution.
Year K A B C O Yearly Total

Intersection Crashes
2010 7 44 214 928 4,526 5,719
2011 10 38 238 929 4,412 5,627
2012 8 36 277 1,065 4,998 6,384
2013 5 63 290 1,133 5,331 6,822
2014 13 37 288 1,278 5,587 7,203
2015 12 29 312 1,230 5,285 6,868
Grand Total 55 247 1,619 6,563 30,139 38,623

Segment Crashes
2010 22 44 337 1,380 9,248 11,031
2011 20 70 329 1,452 9,620 11,491
2012 33 48 312 1,461 9,591 11,445
2013 31 44 367 1,535 10,008 11,985
2014 28 55 364 1,662 10,325 12,434
2015 27 59 350 1,584 9,774 11,794
Grand Total 161 320 2,059 9,074 58,566 70,180

JOURNAL OF TRANSPORTATION SAFETY & SECURITY 7



The inclusion of such a variable creates noise in the generated rules. For
example, normal weather and dry pavement condition represent above
95%. Some variables are removed due to their high correlation with other
variables. For example, crash hour shows high correlation with the lighting
condition. Table 1 provides a summary of H&R crashes since 2010. It
shows the prevalence of the increase in H&R crashes over the past few
years. The values show that segment-related crashes are nearly double com-
pared to intersection-related crashes. The count of intersection-related
crashes is almost half of the segment-related crashes. For fatal crashes, seg-
ments showed substantially greater crash occurrences than intersections.
These differences are not large for injury crashes. For example, nonincapa-
citating crashes are 1,619 and 2,059 for intersection and segment H&R
crashes respectively. H&R property damage only (PDO) crashes are two
times more likely to be segment related than intersection related.
The locations reveal that the majority of these crashes happened in urban

areas and city streets. This trend is in line with findings of other studies
(MacLeod et al., 2012; Solnick & Hemenway, 1994). Additionally, it is also
visible that interstates (posted speed limit of 65mph and above) represent a
higher number of H&R crashes. From the data, it is found that around
45% of H&R crashes happened on interstate roadways. This finding is not
in line with MacLeod et al. (2012) study that claimed that H&R crashes are
less likely to occur in locations with higher posted speed limits. Figure 2
illustrates the distribution of H&R crashes based on the U.S. Census tracts.
Census tracts usually have a population size between 1,200 and 8,000 peo-
ple, with an optimum size of 4,000 people. The spatial area of census tracts
varies widely depending on the density of settlement. The H&R crashes
occur more at populated urban areas. The spatial patterns of segment
crashes are more diverse compared to intersection crashes. Another

Figure 2. Hit-and-run crash locations in Louisiana.
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important pattern of the H&R crashes is the temporal pattern. Figure 3
illustrates the temporal percentage distribution of H&R intersection and
segment crashes by the hours of the day. Segment crashes are higher in
percentages between 11 pm to 6 am. Intersection crashes are higher in per-
centages between 12 pm to 10 pm.

6. Results and findings

The primary data set contains 108,803H&R crash data with 20 variables.
After performing a correlation analysis and missing value entry removal,
the final data set contains 87,459 crashes with nine variables. Table 2 lists
the chi-squared test values (a simplistic test to determine the difference
between the data set attributes) and descriptive statistics of the key varia-
bles. The p values from the chi-squared tests indicate that the variable

Figure 3. Percentage of crashes by hours.

Figure 4. Most frequent items in hit-and-run crashes.
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categories are significantly different for the segment and intersection-
related H&R crashes. Most of the H&R crashes (around 90% to 94%) hap-
pened on straight-aligned roadways. Interstate obviously shows a higher
proportion of segment-related crashes and city streets show a higher pro-
portion of intersection-related crashes. Crashes in dark conditions are
slightly higher in segment-related crashes. Residential localities show a
higher proportion of segment-related H&R crashes. On the other hand,
business and mixed localities show higher proportions in intersection-
related crashes. One-way roadways show higher intersection-related crashes.
Injury crashes are higher in intersection-related crashes. Sideswipe and sin-
gle-vehicle crashes are higher in proportion in segment-related crashes.
Intersection-related crashes show a higher percentage towards angle and
turning crashes.

Table 2. Chi-squared tests and descriptive statistics for key variables by segment and intersec-
tion-related hit and run crashes.
Attributes Segment Intersection p-value Attributes Segment Intersection p value

Alignment (%) <0.001 Road Type (%) <0.001
Straight 49,813 30,143 Two-way undivided 28,008 16,281

(90.0) (93.8) (50.6) (50.7)
Curve 3,323 1,170 Two-way div. 18,744 10,136

(6.0) (3.6) (33.9) (31.5)
Others 2,194 816 One way 7,631 5,091

(4.0) (2.5) (13.8) (15.8)
Highway type (%) <0.001 Others 947 (1.7) 621 (1.9)
Interstate/U.S. 27,631 13,796 Severity (%) <0.001
Hwy/State Hwy (49.9) (42.9)
City street 19,587 15,411 Fatal 156 52

(35.4) (48.0) (0.3) (0.2)
Parish road 7,312 2,499 Severe 281 217

(13.2) (7.8) (0.5) (0.7)
Others 800 423 Moderate 1,869 1455

(1.4) (1.3) (3.4) (4.5)
Lighting (%) <0.001 Complaint 8,077 5,636

(14.6) (17.5)
Daylight 30,736 19,085 No injury 44,947 24,769

(55.6) (59.4) (81.2) (77.1)
Dark 21,480 11,855 Day of week¼Weekend (%) 16,952 9,324 <0.001

(38.8) (36.9) (30.6) (29.0)
Dawn/dusk 1,340 657 Collision type (%) <0.001

(2.4) (2.0)
Others 1,774 532 Sideswipe 20,159 7,121

(3.2) (1.7) (36.4) (22.2)
Locality (%) <0.001 Rear end 19,589 10,587

(35.4) (33.0)
Business 15,902 10,600 Single vehicle or noncollision 9,118 2,851

(28.7) (33.0) (16.5) (8.9)
with vehicle

Residential 15,464 7,380 Right angle 2,739 6,735
(27.9) (23.0) (5.0) (21.0)

Mixed 15,606 11,586 Turning 2,196 4,092
(28.2) (36.1) (4.0) (12.7)

Others 8,358 2,563 Head on 1,413 599
(15.1) (8.0) (2.6) (1.9)

Others 116 144
(0.2) (0.4)
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Market basket analysis can handle complex data sets with a large number
of variables. Unlike the parametric models, there is no need to predeter-
mine the assumptions and functional forms in association rules mining.
Additionally, the generated rules have potentials in exhibiting latent pat-
terns in data. The current study used ‘APRIORI algorithm to perform the
analysis. The rules are generated by using ‘arules’ package of the open
source R Software (Hahsler, Buchta, Gruen, & Hornik, 2010). Figure 4
shows the top twenty most frequent items in each of the data sets. Straight
alignment, no injury, daylight, and two-way undivided roadways are the
top four frequent item sets in both of the data sets. These four items are
strongly associated with the occurrence of intersection and segment-related
H&R crashes. From the fifth ranking, the data sets show the difference between
the rankings. For example, the higher functional class is the fifth most frequent
itemset in segment data. City streets position in the fifth most frequent itemset
in the intersection data set. Localities (business and mixed) are in the top ten
most frequent itemsets in the intersection database. These two categories are
not in the top ten most frequent itemsets in the segment database.

6.1. Key contributing patterns for intersection crashes

This study used APRIORI algorithm that includes two separate steps: (1)
minimum support is used to find all of the frequent item sets in the data-
base and (2) these frequent item sets and the minimum confidence con-
straint are used to form rules. Determining the optimum support and
confidence values is important in performing association rules mining. As
fatal crashes overall represent a small percentage of total crash occurrences,
minimum support and confidence values for intersection data is considered
0.1% and 1%, respectively. These thresholds are determined after conduct-
ing several trials and errors. For real-world implications, researchers can
perform more tests to determine the suitable values of support and confi-
dence based on different decision criteria. Moreover, there is a need to
investigate the rules with more items based on specified conditions. The
higher the lift, the higher the associations between the variables. Table 3
lists the top 20 rules that contain highly associated characteristics in H&R
intersection crashes. The rule with the highest lift value is single vehicle
⟶ fatal. The explanation of this rule is: 0.1% of the single vehicle H&R
crashes are associated with fatalities; Out of all single vehicle H&R crashes,
1.3% were fatal crashes. The proportion of fatal single vehicle H&R crashes
was 7.802 times the proportion of fatal H&R crashes in the complete data
set. Out of the top 20 rules, single vehicle H&R crashes are present in 14
rules. Other frequent items are straight alignment, right angle collision, one-
way/two-way roads, dark, and city street. Figure 5a shows the scatter plots
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of the top 20 rules based on the parameter values. An interactive version of
the plot is located at a weblink (https://rpubs.com/subasish/481019). It is
found that the majority of the rules have high confidence values (0.08 and
above). Five rules (#1, #5, #7, #16, and #17) have lower support and confi-
dence values. These rules are associated with either fatal or severe crashes.
The key findings are the following:
- The top rules for fatal crashes are associated with single vehicles and

dark condition. The spider plots generated for intersection/segment crashes
by hour shows a high percentage of nighttime crashes at intersections than
segments. Other studies showed that the greater the visibility of a potential

Table 3. Top 20 rules sorted by the lift values (intersection data).
Rule ID Rules Support Confidence Lift

#1 Single vehicle ⟶ Fatal 0.001 0.013 7.802
#2 One way and single vehicle ⟶ Moderate 0.001 0.131 2.891
#3 Business locality and single vehicle ⟶ Moderate 0.002 0.127 2.806
#4 Mixed locality and single vehicle ⟶ Moderate 0.003 0.117 2.584
#5 Single vehicle ⟶ Severe 0.001 0.017 2.493
#6 City street and single vehicle ⟶ Moderate 0.005 0.111 2.441
#7 Straight alignment and single vehicle ⟶ Severe 0.001 0.016 2.395
#8 Straight alignment and single vehicle ⟶ Moderate 0.008 0.100 2.214
#9 Daylight and single vehicle ⟶ Moderate 0.004 0.098 2.161
#10 Dark and single vehicle ⟶ Moderate 0.005 0.098 2.159
#11 Single vehicle ⟶ Moderate 0.009 0.096 2.130
#12 Two-way divided and single vehicle ⟶ Moderate 0.002 0.096 2.110
#13 Interstate/U.S. Hwy/State Hwy. and Single vehicle ⟶ Moderate 0.003 0.094 2.067
#14 One-way road and right angle ⟶ Moderate 0.003 0.089 1.959
#15 Two-way undivided and single vehicle ⟶ Moderate 0.005 0.089 1.958
#16 Dark ⟶ Fatal 0.001 0.003 1.876
#17 Straight alignment and dark ⟶ Fatal 0.001 0.003 1.842
#18 Dark and right angle ⟶ Moderate 0.006 0.083 1.839
#19 Residential locality and right angle ⟶ Moderate 0.005 0.079 1.755
#20 City street and right angle ⟶ Moderate 0.010 0.079 1.753

Figure 5. Scatter plots based on support, confidence, and lift values.
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crash, either through more potential witnesses on heavily trafficked roads
or better lighting conditions, the less likely a H&R will occur (Benson
et al., 2018; MacLeod et al., 2012).
- The top rules for severe crashes are associated with single vehicle, and

straight alignment. The top rules for moderate crashes are associated with sin-
gle vehicle, one- way roads, business locality, city street, and straight alignment.

6.2. Key contributing patterns for segment crashes

Table 4 lists the top 20 rules that contain highly associated characteristics
in H&R segment crashes. The minimum support and confidence values for
segment data is considered 0.1% and 0.5%, respectively. The rule with the
highest lift value is dark and single vehicle ⟶ fatal. The explanation of
this rule is 0.1% of the single vehicle H&R crashes at dark are associated
with fatalities; Out of all single vehicle H&R crashes at dark, 1.3% were
fatal crashes. The proportion of fatal single vehicle H&R crashes at dark
was 7.170 times the proportion of fatal H&R crashes in the complete data
set. Out of the top 20 rules, single vehicle H&R crashes are present in 17
rules. The next frequent item is dark. Other frequent items are Interstate/
U.S. Hwy/State Hwy, and two-way undivided roadways. It is also found
that fatal and severe crashes are over-represented in the top rules for seg-
ment crashes than intersection crashes. Figure 5b shows the scatter plots of
the top 20 rules based on support, confidence and lift. An interactive ver-
sion of the plot is located at a weblink (https://rpubs.com/subasish/481018).
The figure shows that around 50% of the rules have low support and confi-
dence scores. These rules are mostly associated with either fatal and severe
crashes. The key findings are the following:

Table 4. Top 20 rules sorted by the lift values (segment data).
Rule ID Rules Support Confidence Lift

#1 Dark and Single vehicle ⟶ Fatal 0.002 0.020 7.170
#2 Interstate/U.S. Hwy/State Hwy and single vehicle ⟶ Fatal 0.001 0.016 5.682
#3 Straight alignment and single vehicle ⟶ Fatal 0.002 0.013 4.562
#4 Single vehicle ⟶ Fatal 0.002 0.012 4.279
#5 Two-way undivided and single vehicle ⟶ Fatal 0.001 0.011 4.036
#6 Dark and single vehicle ⟶ Severe 0.001 0.017 3.330
#7 Interstate/U.S. Hwy/State Hwy and dark ⟶ Fatal 0.002 0.009 3.207
#8 One-way road and single vehicle ⟶ Moderate 0.001 0.096 2.850
#9 City street and single vehicle ⟶ Moderate 0.004 0.095 2.804
#10 Business locality and single vehicle ⟶ Moderate 0.002 0.093 2.743
#11 Other alignments and single vehicle ⟶ Moderate 0.001 0.085 2.522
#12 Mixed locality and single vehicle ⟶ Moderate 0.003 0.084 2.483
#13 Two-way undivided and single vehicle ⟶ Severe 0.001 0.013 2.475
#14 Straight alignment and single vehicle ⟶ Severe 0.002 0.012 2.450
#15 Dark and two-way undivided ⟶ Fatal 0.001 0.007 2.399
#16 Single vehicle ⟶ Severe 0.002 0.012 2.375
#17 Dark and single vehicle ⟶ Moderate 0.007 0.079 2.351
#18 Straight alignment and single vehicle ⟶ Moderate 0.010 0.074 2.186
#19 Single vehicle ⟶ Moderate 0.012 0.072 2.123
#20 Two-way divided and single vehicle ⟶ Moderate 0.003 0.070 2.068
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� The top rules for fatal crashes are associated with single vehicle, dark
condition, Interstate/U.S. Hwy/State Hwy, and two-way undivided road-
ways. For segment crashes, top five rules are associated with fatal
crashes. However, Tay et al. (2009) found that interstate highways and
county and municipal roadways are more common H&R locations than
the U.S. Hwy/State Hwy.

� The top rules for severe crashes are associated with single vehicle, dark
condition, two-way undivided roadways, and straight alignment.
Undivided roadways are associated with the high likelihood of a H&R
crash in the U.S. (Tay et al., 2009).

� The top rules for moderate crashes are associated with single vehicle,
one-way roads, business locality, city street, and straight alignment. This
finding is similar to the finding of moderate crashes at intersections.

In many cases, the top 20 or 30 rules cannot shed enough insights from
a complex data set. A balloon plot is a good data visualization technique in
displaying the association between the representatives of grouped ante-
cedent and consequents from the total set of generated rules. The light gray
color of the balloons indicates small lift values while the dark gray indicates
high lift value. Size is used as the representation of the support values.
Balloon with large radius indicates high support value. On the right hand
side (RHS), the antecedent values are presented. To show the spread of the
rules, one balloon plot has been developed for intersection crash data. One
clear visible pattern is that rules with ‘complaint’ or ‘no injury’ as conse-
quents have high support values. It is obvious due to the higher number of
‘complaint’ or ‘no injury’ in the database. The left hand side (LHS) of
Figure 6 indicates that there are five rules containing both or either of the
items single vehicle and curve in the antecedents while the consequent is a
fatal crash.
For segment and intersection crashes, single-vehicle crashes are asso-

ciated with high crash severities. Another frequent item is dark. To
reduce single-vehicle crashes, the critical measure is aiding so that driv-
ers can keep the vehicles on the traveling path. Locations with inad-
equate roadway markings and associated countermeasures (rumble
strips, raised pavement markers) require additional investigations
regarding H&R crashes. Such roadways with high H&R crashes require
further attention. Lighting at night is considered as an effective counter-
measure to reduce crashes. Roadways with high H&R crash occurrences
can be considered as the potential sites for lighting installation. Majority
of H&R crashes happen in urban settings. To reduce intersection-related
H&R crashes, installation of traffic cameras for road surveillance can
improve safety.
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Majority of the H&R studies are focused on driver characteristics. As
driver characteristics are missing in many cases, it is important to examine
crash characteristics to identify areas, locations, and patterns of characteris-
tics where potential countermeasures could be focused. Benson et al. (2018)
recommended that low-speed roadways, urban areas with high nonmotor-
ized mobilities should all be considered when developing H&R related
countermeasures. The maximum sentences (range from 6 months to
30 years) for a H&R crash vary from state to state in the U.S. (Grembek &
Griswold, 2012). This study also showed that higher sentencing does not
have an immediate effect on the rates of H&R fatalities. Another potential
practice is to increase the probability of capturing the offender. A program
named Yellow Alert Program’ ws implemented in the city of Los Angeles,
California, in 2016. The effectiveness of this program has not been deter-
mined yet. There is a need to evaluate the newer countermeasures that
focus on mitigating potential scenarios of H&R crashes and identifying
offenders. The geometric feature patterns identified in this study can be
used in assessing similar locations as ‘hit and run crash prone’. There is a
need for safety education on H&R crashes. Drivers aware of the punish-
ment of being caught will be reluctant in fleeing the scene. So, there is a
need to evaluate the role of public education in public perception of
H&R laws.

7. Conclusions

There is a small number of studies on H&R crashes, especially when some-
one considers the high percentage of these incidents. There is a need to

Figure 6. Balloon plot of the rules generated for intersection data.
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know the reason behind H&R crashes to develop relevant policies and
implement appropriate countermeasures. This study attempts to under-
stand the effect of the various crash and geometric variables on H&R
crashes, unlike other previous driver-trait-focused studies that used lim-
ited data. The goal of the study is to help reducing H&R crashes by deter-
mining the key contributing patterns from a data mining approach.
Together with visualizations of the rules, the current method provides
interpretable results to the transportation safety practitioners. Based on
the high lift values in the generated rules, single-vehicle crash is found as
the most highly relevant variable. Dark condition is the second most
common factor in the generated rules. These two factors are also associ-
ated with fatal and severe injury crashes. The rules also show that H&R
crashes happen mostly in urban settings. For intersection crashes, right-
angle crashes are also present in some rules with high lift values.
Additionally, it was found that segment-related crashes are over-repre-
sented in fatal and severe crashes compared to intersection crashes. The
findings call for improvement of roadway markings and lighting condi-
tions. More traffic cameras at intersections will help in detecting H&R
offenders. Strict state laws and policies like Yellow Alert Program can
help in detecting offenders which in turn will reduce the tendencies of
fleeing a crash scene.
This study has some limitations. Determination of the optimum or most

suitable support and confidence thresholds requires more thorough investi-
gation. This study excluded driver characteristics in the analysis. Although
the study is mainly focused on determining the impact of the crash and
geometric properties, an analysis using the driver characteristics may pro-
vide more intuitive results. The results are needed to be carefully inter-
preted due to the unobserved heterogeneity due to driver related factors.
Future studies can incorporate driver characteristics to apply to this tech-
nique. However, there are challenges in performing the analysis on a
smaller dataset due to the absence of driver characteristics in the H&R
crash databases.
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